Hyperbolic Differential-operator Equations on a Whole Axis
نویسنده
چکیده
We give an abstract interpretation of initial boundary value problems for hyperbolic equations such that a part of initial boundary value conditions contains also a differentiation on the time t of the same order as equations. The case of stable solutions of abstract hyperbolic equations is treated. Then we show applications of obtained abstract results to hyperbolic differential equations which, in particular, may represent the longitudinal displacements of an inhomogeneous rod under the action of forces at the two ends which are proportional to the acceleration.
منابع مشابه
The Cauchy Problem for Complete Second-Order Hyperbol ic Differential Equations with Variable Domains of Operator Coefficients
Complete second-order hyperbolic differential equations with constant domains of operator coefficients were investigated in [1, 2]. In the case of variable domains of operator coefficients, second-order hyperbolic differential equations with a two-term leading part were analyzed in [3-5]. In the present paper, we investigate second-order hyperbolic differential equations with a three-term leadi...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملOptical properties of a semi-infinite medium consist of graphene based hyperbolic meta-materials with tilted optical axis
In this paper, the optical properties of a semi-infinite medium composed of graphen-based hyperbolic meta-materials with the optical axis were tilted with respect to its boundary with air, by using the Maxwell equations; then the homogeneous effective medium approximation method was studied. The results showed that the orientation of the structure layers (geometric induced anisotropy) affec...
متن کاملHyperbolic Behavior of Jacobi Fields Along Billiard Flows
This paper discusses hyperbolic behavior of Jacobi fields along billiard flows on multidimensional Reimannian manifolds. A class of generalized differential operators associated with the impulsive equations (generalized Jacobi equations) are defined using a new Radon measure. We investigate the hyperbolic behavior of functions in the null-space of the operator by applying operator theory.
متن کاملFirst-order Hyperbolic Pseudodifferential Equations with Generalized Symbols
We consider the Cauchy problem for a hyperbolic pseudodifferential operator whose symbol is a Colombeau generalized function. Such equations arise, for example, after a reduction-decoupling of second-order model systems of differential equations in seismology. We prove existence of a unique generalized solution under log-type growth conditions on the symbol, thereby extending known results for ...
متن کامل